Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.146
Filtrar
1.
Expert Rev Mol Med ; 26: e13, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698556

RESUMO

PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.


Assuntos
Neoplasias , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Reparo do DNA , Inflamação/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
2.
Elife ; 132024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690995

RESUMO

PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.


Assuntos
Cromatina , Proteínas de Drosophila , Histonas , Poli(ADP-Ribose) Polimerase-1 , Transcrição Gênica , Animais , Cromatina/metabolismo , Cromatina/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Metilação , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Resposta ao Choque Térmico
3.
Int J Cancer ; 155(2): 203-210, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619111

RESUMO

Metastatic melanoma is still a difficult-to-treat cancer type owing to its frequent resistance mechanisms to targeted and immunotherapy. Therefore, we aimed to unravel novel therapeutic strategies for melanoma patients. Preclinical and clinical studies show that melanoma patients may benefit from a treatment with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this study, we focus on PARP1 as a potential biomarker to predict the response of melanoma cells to PARPi therapy. We found that melanoma cells with high basal PARP1 expression exhibit significantly increased cell death after PARPi treatment owing to higher PARP1 trapping compared with melanoma cells with low PARP1 expression. In addition, we could demonstrate that PARP1 expression levels are low in nonmalignant skin cells, and metastatic melanomas show considerably higher PARP1 levels compared with primary melanomas. Most strikingly, we found that high PARP1 levels correlate with worse overall survival of late stage metastasized melanoma patients. In conclusion, we show that PARP1 might act as a biomarker to predict the response to PARPi therapy, and that in particular the late stage metastasized melanoma patients are especially sensitive to PARPi therapy owing to elevated PARP1 expression. Our data suggest that the PARPi cytotoxicity primarily will affect the high PARP1 expressing melanoma cells, rather than the low PARP1 expressing nonmalignant skin cells resulting in only low side effects.


Assuntos
Melanoma , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Feminino , Masculino , Metástase Neoplásica , Pessoa de Meia-Idade , Idoso , Resistencia a Medicamentos Antineoplásicos , Prognóstico
4.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
DNA Viral , Herpesvirus Suídeo 1 , Imunidade Inata , Nucleotidiltransferases , Herpesvirus Suídeo 1/imunologia , Animais , Nucleotidiltransferases/metabolismo , DNA Viral/imunologia , Suínos , Humanos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Miosina não Muscular Tipo IIA/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Transdução de Sinais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Linhagem Celular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Células HEK293
5.
Eur J Med Chem ; 271: 116405, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678823

RESUMO

PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 µM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.


Assuntos
Antineoplásicos , Benzimidazóis , Ensaios de Seleção de Medicamentos Antitumorais , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
6.
Sci Rep ; 14(1): 9483, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664520

RESUMO

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Assuntos
Alcaloides , Benzodioxóis , Proteínas de Choque Térmico HSP90 , Hiperglicemia , Simulação de Acoplamento Molecular , Piperidinas , Poli(ADP-Ribose) Polimerase-1 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alcamidas Poli-Insaturadas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Piperidinas/farmacologia , Piperidinas/química , Benzodioxóis/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/administração & dosagem , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Aloxano , Ratos , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Nanopartículas/química , Dano ao DNA/efeitos dos fármacos
7.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574839

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Assuntos
Chalconas , Fármacos Neuroprotetores , Parthanatos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuínas , Animais , Ratos , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Parthanatos/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/complicações , Sobrevivência Celular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
8.
Nat Commun ; 15(1): 2857, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565848

RESUMO

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.


Assuntos
Reparo do DNA , DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , DNA/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Telômero/genética , Telômero/metabolismo
9.
Mol Pharm ; 21(5): 2606-2621, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38606716

RESUMO

Compounds 8a-j were designed to adjust the mode of interaction and lipophilicity of FTT by scaffold hopping and changing the length of the alkoxy groups. Compounds 8a, 8d, 8g, and BIBD-300 were screened for high-affinity PARP-1 through enzyme inhibition assays and are worthy of further evaluation. PET imaging of MCF-7 subcutaneous tumors with moderate expression of PARP-1 showed that compared to [18F]FTT, [18F]8a, [18F]8d, and [18F]8g exhibited greater nonspecific uptake, a lower target-to-nontarget ratio, and severe defluorination, while [18F]BIBD-300 exhibited lower nonspecific uptake and a greater target-to-nontarget ratio. PET imaging of 22Rv1 subcutaneous tumors, which highly express PARP-1, confirmed that the uptake of [18F]BIBD-300 in normal organs, such as the liver, muscle, and bone, was lower than that of [18F]FTT, and the ratio of tumor-to-muscle and tumor-to-liver [18F]BIBD-300 was greater than that of [18F]FTT. The biodistribution results in mice with MCF-7 and 22Rv1 subcutaneous tumors further validated the results of PET imaging. Unlike [18F]FTT, which mainly relies on hepatobiliary clearance, [18F]BIBD-300, which has lower lipophilicity, undergoes a partial shift from hepatobiliary to renal clearance, providing the possibility for [18F]BIBD-300 to indicate liver cancer. The difference in the PET imaging results for [18F]FTT, [18F]BIBD-300, and [18F]8j in 22Rv1 mice and the corresponding molecular docking results further confirmed that subtle structural modifications in lipophilicity greatly optimize the properties of the tracer. Cell uptake experiments also demonstrated that [18F]BIBD-300 has a high affinity for PARP-1. Metabolized and unmetabolized [18F]FTT and [18F]BIBD-300 were detected in the brain, indicating that they could not accurately quantify the amount of PARP-1 in the brain. However, PET imaging of glioma showed that both [18F]FTT and [18F]BIBD-300 could accurately localize both in situ to C6 and U87MG tumors. Based on its potential advantages in the diagnosis of breast cancer, prostate cancer, and glioma, as well as liver cancer, [18F]BIBD-300 is a new option for an excellent PARP-1 tracer.


Assuntos
Radioisótopos de Flúor , Poli(ADP-Ribose) Polimerase-1 , Tomografia por Emissão de Pósitrons , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Camundongos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Feminino , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacocinética , Linhagem Celular Tumoral , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Desenho de Fármacos , Camundongos Endogâmicos BALB C , Células MCF-7
10.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657044

RESUMO

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Assuntos
Quinase 1 do Ponto de Checagem , Replicação do DNA , Poli(ADP-Ribose) Polimerase-1 , Animais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Camundongos , Humanos , Dano ao DNA , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Arch Biochem Biophys ; 756: 110010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642632

RESUMO

PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.


Assuntos
Antineoplásicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Domínio Catalítico , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Ligação de Hidrogênio
12.
Nature ; 628(8007): 433-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509368

RESUMO

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Assuntos
Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Transcrição Gênica , Humanos , Quebras de DNA de Cadeia Dupla , Replicação do DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo de DNA por Recombinação , Fase S , Transcrição Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo
13.
Nat Commun ; 15(1): 2599, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521768

RESUMO

The effectiveness of poly (ADP-ribose) polymerase inhibitors (PARPi) in creating single-stranded DNA gaps and inducing sensitivity requires the FANCJ DNA helicase. Yet, how FANCJ relates to PARP1 inhibition or trapping, which contribute to PARPi toxicity, remains unclear. Here, we find PARPi effectiveness hinges on S-phase PARP1 activity, which is reduced in FANCJ deficient cells as G-quadruplexes sequester PARP1 and MSH2. Additionally, loss of the FANCJ-MLH1 interaction diminishes PARP1 activity; however, depleting MSH2 reinstates PARPi sensitivity and gaps. Indicating sequestered and trapped PARP1 are distinct, FANCJ loss increases PARPi resistance in cells susceptible to PARP1 trapping. However, with BRCA1 deficiency, the loss of FANCJ mirrors PARP1 loss or inhibition, with the detrimental commonality being loss of S-phase PARP1 activity. These insights underline the crucial role of PARP1 activity during DNA replication in BRCA1 deficient cells and emphasize the importance of understanding drug mechanisms for enhancing therapeutic response.


Assuntos
DNA Helicases , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi , Poli(ADP-Ribose) Polimerase-1 , Linhagem Celular Tumoral , DNA Helicases/genética , Reparo do DNA , Proteína 2 Homóloga a MutS/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fase S , Humanos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética
14.
Sci Rep ; 14(1): 7530, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553566

RESUMO

Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.


Assuntos
Cromatina , Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , DNA/metabolismo , Reparo do DNA , RNA , Adenosina Difosfato Ribose/metabolismo , Oligonucleotídeos
15.
Phytomedicine ; 128: 155527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489888

RESUMO

BACKGROUND: Pancreatic cancer, a tumor with a high metastasis rate and poor prognosis, is among the deadliest human malignancies. Investigating effective drugs for their treatment is imperative. Moracin D, a natural benzofuran compound isolated from Morus alba L., shows anti-inflammation and anti-breast cancer properties and is effective against Alzheimer's disease. However, the effect and mechanism of Moracin D action in pancreatic cancer remain obscure. PURPOSE: To investigate the function and molecular mechanism of Moracin D action in repressing the malignant progression of pancreatic cancer. METHODS: Pancreatic cancer cells were treated with Moracin D, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) and immunofluorescence assays. The clonogenicity of pancreatic cancer cells was assessed based on plate colony formation and soft agar assay. Flow cytometry was used to detect cell apoptosis. The expression of proteins related to the apoptosis pathway was determined by Western blot analysis. Moracin D and XIAP were subjected to docking by auto-dock molecular docking analysis. Ubiquitination levels of XIAP and the interaction of XIAP and PARP1 were assessed by co-immunoprecipitation analysis. Moracin D's effects on tumorigenicity were assessed by a tumor xenograft assay. RESULTS: Moracin D inhibited cell proliferation, induced cell apoptosis, and regulated the protein expression of molecules involved in caspase-dependent apoptosis pathways. Moracin D suppressed clonogenicity and tumorigenesis of pancreatic cancer cells. Mechanistically, XIAP could interact with PARP1 and stabilize PARP1 by controlling its ubiquitination levels. Moracin D diminished the stability of XIAP and decreased the expression of XIAP by promoting proteasome-dependent XIAP degradation, further blocking the XIAP/PARP1 axis and repressing the progression of pancreatic cancer. Moracin D could dramatically improve the chemosensitivity of gemcitabine in pancreatic cancer cells. CONCLUSION: Moracin D repressed cell growth and tumorigenesis, induced cell apoptosis, and enhanced the chemosensitivity of gemcitabine through the XIAP/PARP1 axis in pancreatic cancer. Moracin D is a potential therapeutic agent or adjuvant for pancreatic cancer.


Assuntos
Apoptose , Benzofuranos , Benzopiranos , Proliferação de Células , Neoplasias Pancreáticas , Poli(ADP-Ribose) Polimerase-1 , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Benzofuranos/farmacologia , Camundongos Nus , Morus/química , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Simulação de Acoplamento Molecular , Camundongos Endogâmicos BALB C , Gencitabina , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Biol Sci ; 20(5): 1602-1616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481797

RESUMO

Myocardial infarction causes cardiomyocyte loss, and depleted cardiomyocyte proliferative capacity after birth impinges the heart repair process, eventually leading to heart failure. This study aims to investigate the role of Poly(ADP-Ribose) Polymerase 1 (PARP1) in the regulation of cardiomyocyte proliferation and heart regeneration. Our findings demonstrated that PARP1 knockout impaired cardiomyocyte proliferation, cardiac function, and scar formation, while PARP1 overexpression improved heart regeneration in apical resection-operated mice. Mechanistically, we found that PARP1 interacts with and poly(ADP-ribosyl)ates Heat Shock Protein 90 Alpha Family Class B Member 1 (HSP90AB1) and increases binding between HSP90AB1 and Cell Division Cycle 37 (CDC37) and cell cycle kinase activity, thus activating cardiomyocyte cell cycle. Our results reveal that PARP1 promotes heart regeneration and cardiomyocyte proliferation via poly(ADP-ribosyl)ation of HSP90AB1 activating the cardiomyocyte cell cycle, suggesting that PARP1 may be a potential therapeutic target in treating cardiac injury.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Camundongos , Proliferação de Células/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
17.
Br J Cancer ; 130(9): 1529-1541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461169

RESUMO

BACKGROUND: Several studies have described a potential anti-tumour effect of cannabinoids (CNB). CNB receptor 2 (CB2) is mostly present in hematopoietic stem cells (HSC). The present study evaluates the anti-leukaemic effect of CNB. METHODS: Cell lines and primary cells from acute myeloid leukaemia (AML) patients were used and the effect of the CNB derivative WIN-55 was evaluated in vitro, ex vivo and in vivo. RESULTS: We demonstrate a potent antileukemic effect of WIN-55 which is abolished with CB antagonists. WIN-treated mice, xenografted with AML cells, had better survival as compared to vehicle or cytarabine. DNA damage-related genes were affected upon exposure to WIN. Co-incubation with the PARP inhibitor Olaparib prevented WIN-induced cell death, suggesting PARP-mediated apoptosis which was further confirmed with the translocation of AIF to the nucleus observed in WIN-treated cells. Nicotinamide prevented WIN-related apoptosis, indicating NAD+ depletion. Finally, WIN altered glycolytic enzymes levels as well as the activity of G6PDH. These effects are reversed through PARP1 inhibition. CONCLUSIONS: WIN-55 exerts an antileukemic effect through Parthanatos, leading to translocation of AIF to the nucleus and depletion of NAD+, which are reversed through PARP1 inhibition. It also induces metabolic disruptions. These effects are not observed in normal HSC.


Assuntos
Leucemia Mieloide Aguda , Parthanatos , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Parthanatos/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Canabinoides/farmacologia , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Dano ao DNA/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
18.
Adv Biol (Weinh) ; 8(5): e2400028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38463014

RESUMO

Emerging evidence has implicated nicotinamide adenine dinucleotide (NAD+) metabolism in various inflammatory diseases. In the study, the role of NAD+ metabolism in Complete Freund's Adjuvant (CFA)-evoked inflammatory pain and the underlying mechanisms are investigated. The study demonstrated that CFA induced upregulation of nicotinamide phosphoribosyltransferase (NAMPT) in dorsal root ganglia (DRG) without significant changes in the spinal cord. Inhibition of NAMPT expression by intrathecal injection of NAMPT siRNA alleviated CFA-induced pain-like behavior, decreased NAD+ contents in DRG, and lowered poly-(ADP-ribose) polymerase 1 (PARP1) activity levels. These effects are all reversed by the supplement of nicotinamide mononucleotide (NMN). Inhibition of PARP1 expression by intrathecal injection of PARP1 siRNA alleviated CFA-induced pain-like behavior, while elevated NAD+ levels of DRG. The analgesic effect of inhibiting NAMPT/NAD+/PARP1 axis can be attributed to the downregulation of the NF-κB/IL-1ß inflammatory pathway. Double immunofluorescence staining showed that the expression of NAMPT/NAD+/PARP1 axis is restricted to DRG neurons. In conclusion, PARP1 activation in response to CFA stimulation, fueled by NAMPT-derived NAD+, mediates CFA-induced inflammatory pain through NF-κB/IL-1ß inflammatory pathway.


Assuntos
Gânglios Espinais , NAD , Nicotinamida Fosforribosiltransferase , Poli(ADP-Ribose) Polimerase-1 , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Masculino , Camundongos , Adjuvante de Freund , Inflamação/metabolismo , Citocinas/metabolismo , Dor/metabolismo , NF-kappa B/metabolismo
19.
Cell Signal ; 117: 111070, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38307305

RESUMO

Doxorubicin (Dox) is a potent antineoplastic agent, but its use is curtailed by severe cardiotoxicity, known as Dox-induced cardiomyopathy (DIC). The molecular mechanism underlying this cardiotoxicity remains unclear. Our current study investigates the role of Ubiquitin-Specific Protease 36 (USP36), a nucleolar deubiquitinating enzyme (DUB), in the progression of DIC and its mechanism. We found increased USP36 expression in neonatal rat cardiomyocytes and H9C2 cells exposed to Dox. Silencing USP36 significantly mitigated Dox-induced oxidative stress injury and apoptosis in vitro. Mechanistically, USP36 upregulation positively correlated with Poly (ADP-ribose) polymerase 1 (PARP1) expression, and its knockdown led to a reduction in PARP1 levels. Further investigation revealed that USP36 could bind to and mediate the deubiquitination of PARP1, thereby increasing its protein stability in cardiomyocytes upon Dox exposure. Moreover, overexpression of wild-type (WT) USP36 plasmid, but not its catalytically inactive mutant (C131A), stabilized PARP1 in HEK293T cells. We also established a DIC model in mice and observed significant upregulation of USP36 in the heart. Cardiac knockdown of USP36 in mice using a type 9 recombinant adeno-associated virus (rAAV9)-shUSP36 significantly preserved cardiac function after Dox treatment and protected against Dox-induced structural changes within the myocardium. In conclusion, these findings suggest that Dox promotes DIC progression by activating USP36-mediated PARP1 deubiquitination. This novel USP36/PARP1 axis may play a significant regulatory role in the pathogenesis of DIC.


Assuntos
Cardiomiopatias , Cardiotoxicidade , Animais , Humanos , Camundongos , Ratos , Apoptose , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/complicações , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Células HEK293 , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ubiquitina Tiolesterase/metabolismo
20.
Cell Rep ; 43(3): 113845, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393943

RESUMO

Poly(ADP-ribosyl)ation (PARylation), catalyzed mainly by poly(ADP-ribose) polymerase (PARP)1, is a key posttranslational modification involved in DNA replication and repair. Here, we report that TIMELESS (TIM), an essential scaffold of the replisome, is PARylated, which is linked to its proteolysis. TIM PARylation requires recognition of auto-modified PARP1 via two poly(ADP-ribose)-binding motifs, which primes TIM for proteasome-dependent degradation. Cells expressing the PARylation-refractory TIM mutant or under PARP inhibition accumulate TIM at DNA replication forks, causing replication stress and hyper-resection of stalled forks. Mechanistically, aberrant engagement of TIM with the replicative helicase impedes RAD51 loading and protection of reversed forks. Accordingly, defective TIM degradation hypersensitizes BRCA2-deficient cells to replication damage. Our study defines TIM as a substrate of PARP1 and elucidates how the control of replisome remodeling by PARylation is linked to stalled fork protection. Therefore, we propose a mechanism of PARP inhibition that impinges on the DNA replication fork instability caused by defective TIM turnover.


Assuntos
Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Dano ao DNA , Replicação do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA